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NATIONALAERONAUTICSANDSPACEADMINISTRATION

MEMORANDUM5-4-59E

SOURCEDISTRIBUTIONMETHODFORUNSTEADYONE-DIMENSIONALFLOWSWITH

SMALLMASS,MOMENTUM,ANDHEATADDITIONANDSMALLAREAVARIATION

By Harold Mirels

SUMMARY

A source distribution method is presented for obtaining flow per-
turbations due to smsil unsteady area variations, mass, momentum,and
heat additions in a basic uniform (or piecewise uniform) one-dimensional
flow. First_ the perturbations due to an elemental area variation, mass,
momentum,and heat addition are found. The general solution is then
represented by a spatial and temporal distribution of these elemental
(source) solutions. Emphasis is placed on discussing the physical nature
of the flow phenomena.

The method is illustrated by several examples. These include the
determination of perturbations in basic flows consisting of (i) a shock
propagating through a nonuniform tube, (2) a constant-velocity piston
driving a shock, (3) ideal shock-tube floWs, and (4) deflagrations in-
itiated at a closed end. The method is particularly applicable for find-
ing the perturbations due to relatively thin wall boundary layers.

INTRODUCTION

Numerousstudies have been madeof unsteady one-dimensional flows
through ducts with area variation, body forces, mass, and heat addition.
The most general method of handling such problems is by the method of
characteristics which, for these problems, employs the "Riemann variables."
A full account of this method is given in reference i.

Whenthe area variation, body forces, and so forth introduce only
small disturbances into an otherwise uniform (or piecewise uniform) basic
flow_ the equations of motion can be readily linearized. As is usual
with linear problems, manydifferent methods and viewpoints can then be
used to obtain solutions. One approach is to find first the perturba-
tions associated with an elemental area change, body force, mass, and
heat addition. The general linearized solution of an unsteady one-
dimensional flow can then be represented by a spatial and temporal
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distribution of such elemental solutions, this approach maybe termed
a "source distribution method." The advantage of this viewpoint over
more formal methods of solution is that it )ften gives a better physical
insight into the flow processes. A discussion of the source distribu-
tion concept, as applied to one-dimensional unsteady flows, does not
appear to exist explicitly in the current literature. Hence_such a
discussion is presented herein. To emphasi_ethe physical nature of
these flows_ the solutions are first deduce&from a relatively simple
flow problem. The solutions are then again deducedby formal manipula-
tion of the equations of motion as they app,_ar in the method of charac-
teristics. The use of these solutions is then illustrated by several
examples.

The source distribution method has bee]l previously appiied_ by the
author_ to find nonuniformities in a shock -:_ubedue to the unsteady
boundary layer along the shock tube wall (r_fs. 2 and 3). The present
report maybe considered as an extension and elaboration of the method
presented in those reports.

ANALYSIS

A uniform basic flow is assumedto be _lightly disturbed by small
area changes_body forces_ massj and heat _ditions, which induce un-
steady one-dimensional perturbations. The _erturbations due to an ele-
mental area change_body force_ and so fortt_ are first deduced from a
simple flow problem. The general solution Js then expressed as the
superposition of these elemental flows. Firaliy, the general solution
is again obtained by a formal linearization of the equations of motion
as they appear in the method of characterislics.

Equations of Moticm

Consider a tmiform basic flow through s tube of constant area A.
The uniform fluid properties are denoted by the symbols p, p_ T,
u, .... (Symbols are defined in appendix _.) Let perturbations from
those uniform values be denoted by the prefi_ _ so that the net pres-
sure at a point is p + Ap, the net density is p + Z_0, .... T_]eper-
turbations are generally functions of (x_t) _o that _p _ gxp(_,t),
Zxp_ _0(x_t), and so forth. By assuming tha_ the perturbations ar_ du_
to small area variation, body forces_ mass_ _nd heat additions, the
equations of motion are:

Continuity:

_U

_- + u 0x



Momentum:

_Au _u i _p f
(ib)

Energy:

%7- + u %x - pT

State •

ap a_ aT
=0

p p T
(id)

whe re

b(x,t) - m - + u

m(x,t) _ mass addition, per unit volume, per unit time

AA(x,t) m perturbation of cross-sectional area

f(x,t) _ body force, per unit volume, acting in +x direction

q(x,t) s heat addition; per unit volume_ per unit time

As(x_t) _ cv -1_ - entropy perturbation

The quantities _, f_ and q may be referred to as "volumetric sources."
i

They are, respectively, sources of mass , momentum, and heat. The term

"volumetric" stems from the fact that they are defined on a "per unit

volume" basis.

For a given area variation AA(x,t), the average velocity (normal

to the wall) of a fluid particle at the wall at any point (x,t) is given

by

V---- - _- + U

iThe quantity g may be considered as the equivalent volumetric

mass source in a tube of constant area_ which induces the same pertur-

bations as a prescribed mass addition m and area variation AA.



where Z is the perimeter corresponding to the cross-sectional area A.
The normal velocity is positive when directed inward. Then_ for the case
of area variation (but no external mass addition),

(2)

This expression is convenient for finding p_rturbations due to thin un-

steady boundary layers along a constant-are_ tube. Here_ v is the ver-

tical velocity at the outer edge of the boundary layer_ as computed from

boundary-layer theory. This approach is used in references 2 and 3 to

find nonuniformities in shock tubes due to the wall boundary layer.

Elemental Source Solutions

The quantities U_ f_ and q were referred to as volumetric sources

since they were defined on a per unit volum,_ basis. Equivalent quanti-

ties_ defined on a per unit cross-sectional area basis, may be referred

to as "planar sources." For example_ plan_" mass_ momentum_ and heat

sources at x = 0 can be defined by the reKations

_E 6 _E

_--lira __e _ dx _- lira Z f dx q = lira JE

_ f_ q_

q (3)

where

m equivalent mass addition at x = 0_ per unit Aj per unit time

m body force at x = O, per unit A, in +_ direction

_ heat addition at x = 0_ per unit A_ per unit time

In general_ _ f_ and q can be functions cf time. In the present sec-

tion, a simple flow containing planar sources will be considered. The
solution of this flow will then be used to deduce the flow field induced

by an elemental source.

Assume that planar mass_ momentum_ and heat sources are placed at

x = 0 at time t = 0 (in an otherwise unifgrm flow) and that they re-

main at constant strength thereafter. The resulting perturbed flow field

is indicated in figure i (for the case where the basic uniform flow is

subsonic). In figure l(b), line a is a down3tream propagating acoustic

wave moving with velocity u + a, line b is _ contact surface between

two regions of different entropy_ moving with velocity u (neglecting

perturbation velocities), e_d line c is an u0stream propagating acoustic



wave moving with velocity u - a. The lines a, b_ c_ and x = 0 sub-
divide the flow into four regions_ I_ 2_ 3_ and _. Region i is the
original undisturbed _miform flow. The perturbations in regions 2, 3,
and A are independent of x and t.

The magnitude of the perturbations in the various regions can be
found by considering the jump in the perturbation quantities across
lines a_ b_ c_ and x = 0. The case M< i is treated here_ while the
case M > i is treated in appendix B.

Line a. - Line a is a downstream propagating acoustic wave. The

acoustic relations then give

mp2 = p_u 2 (_a)

_2 = _ mu2 (4b)
a

Line b. - The fluid velocity and pressure are continuous across a

contact surface so that

Au 3 = Au2

Ap3 = Ap2

Line c. - Line c is an upstream propagating acoustic wave.

acoustic relations give

Ap 4 = _paZ_u4

Ap 4 = _ _P Au 4
a

The

(5a)

(sb)

(6a)

(Gb)

Line x = 0. - Integrating equations (la) to (ic) across

and noting equations (3) give, respectively,

1 (@3- Ap_) - T_(A_s - A_4) + 7 p

x= 0

(Ta)

(7b)

u\ _ - _r - CvPT
(7c)

s_u_tio_ (70) f_z__ow_f_,o_ ms::--- o, Ass = cv[(_s/p s) - r(mos/ps)].



Equations (A) to (7) are nine equations in nine unknowns.

tion can be expressed as

The solu-

-7 = 2(i - M)pa __)_ Cp_
(Sb)

m

cv cvPuT
(8c)

All other perturbations are then found directly from equations (4) to (7).

Now, assume that equal and opposite (;ith respect to the previous

example) planar mass, momentum, and heat s]urces are placed at x = 0

at time t = At (in the same otherwise uni[orm flow) and that they re-

main at constant strength thereafter. The corresponding t-x diagram

is shown in sketch (a). The lines representing the acoustic waves and

c

!

!

At T

l

/

_x

(a)

the contact surface are displaced upward b__ an amount fit from the cor-

responding lines in figure l(b) The perturbations in regions 2' 3'• ,

and 4' are equal and opposite to those of _he corresponding regions in

figure l(b).

If the flow fields in figure l(b) and sketch (a) are linearly super-

posed, the resulting flow (sketch (b)) has zero perturbations everywhere

except between lines a, a'; b, b'; and c, c' (since the perturbations in

regions 2, 3, and _ are equal and opposite to those in regions 2', 3'_

and 4'). By using a superscript ( )+ to denote perturbations due to a

downstream propagating acoustic wave; the pressure perturbations between

lines a and a' can be written (from eq. (8a))



!

3+3' f2'
+3

' '
_ X

(b)

-_- = 2(1 + M)pa + _pT +

Also, for this region (from eqs. (4)), (Au+/a) = (Z_o+IP) =

(ga)

(np+/_). By
denoting the perturbations due to an upstream propagating acoustic wave

by the superscript ( )-, the pressure perturbation between lines c and

c' can be written (from eq. (8b))

-Ap- _ _ q (gb)
--p-- - 2(1 - M)pa +cpT

Also, for this region (from eqs. (6)), (-Au-/a) = (Ap-/p) = (ap-/¥p).

Between lines b and b', the velocity and pressure perturbations are zero_

while the entropy perturbation is given by (from eq. (8c))

cv - Cv0UT
(9c)

The corresponding density perturbation is (Z_o/0) = -(Zks/cp).

A s_milar development is presented in appendix B for the M > i

case. The results for Ap+_ Z_p-, and Z_s are the same as for the M < i

case (e.g., eqs. (9)) except that the expression for Ap- contains the

term (M - i) for the M > i case. Use of Ii - M I in the demonimator

of equation (gb) makes equations (S) applicable for both M < i and

M>I.

Now; consider sketch (b) in the limit as At _ O. It is then clear

that _, planar source at x : O, t : 0 instantaneously generates a
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downstreampropagating acoustic wave, an _streampropagating acoustic
wave, and an entropy wave which propagate_i_along the lines x = (u + a)t,
x = (u - a)t, and x = ut, respectively. The strength of these waves is
given by equations (9). The perturbations; are zero everywhere except on
these lines.

The results of the previous paragrapl may be readily generalized to

the case where the planar source is place(, at the arbitrary point x = _
t = T (see sketches (c) and (d)):

M<I M>I

t_ "Z" t, l"

Z4o- ASA_+ Ap- As

w P /_,.../x,p +

(¢,_-) (¢,_-)

._ x,_ ----x,(
(c) (d)

The resulting perturbations and the lines along which these perturbations

propagate are then

= 2(1 + M)pa + CpT

rAu + rz_o+

a p

(lOa)

along x= _ + (u+ a)(t- _),

Ap- r (. _

p - 211 MlPa_;+-_pT

rAu- rap-

a p

a

(lOb)

along x = _ + (u - a)(t - _), and



P (Ap = Au = O) (lOc)

along x = _ + u(t - m).

The perturbations are zero everywhere except on these lines. The lines

along which the disturbances propagate are termed "characteristic"

lines. The line along which the entropy wave propagates may also be

referred to as a "particle path" line since the entropy wave is convected

by the stream.

Equations (i0) are the elemental source solutions_which w_ had set

out to obtain. From these equations it is seen that Z and q generate

upstream and downstream propagating acoustic waves which have the same

sign, whereas _ generates upstream and downstream propagating acoustic

waves which have opposite signs. The ratio of the downstream and up-

stream acoustic waves is Ap+/Ap - = il- M /(i + M) for mass or heat

addition and is Ap+/Ap - =-- _i- M I(i + M) for a body force. Thus, the

upstream propagating acoustic wave is stronger than the downstream wave

(considering _, q, and _ separately) except for M = 0 and M _ _.

As M approaches i, the value of ap- becomes very large (violating

the assumption of small perturbations) and equations (i0) become invalid.

General Solution

The perturbations due to an arbitrary spatial and temporal distribu-

tion of volumetric mass, momentum; and heat sources can be found by the

linear superposition of the elemental solutions of equations (i0). Again,

use the coincident coordinate systems ({,T) and (x,t) where ({,T) defines

the source location and (x,t) is the point at which the perturbations are

to be found. Note that the volumetric mass source between { - (d{/2)

and { + (d_/2) is equivalent to a planar mass source of strength

U(_m) : _(_,m)d_, and so forth. Then, by linear superposition, the net

perturbation at (x_t) due to an arbitrary volumetric source distribution

is given by

Ap(x,t) Ap÷(x_t) +Ap-(x,t) (lla)
P P P

Y Au(x,t) _ Ap+(x_t) Ap-(x,t) (lib)
a p p
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where

Ao(x_t) = _p(x,t) _s(x,t) (llc)
D TP Cp

AT(x,t) _ Ap(x,t) Lo(x,t) (lid)
T p p

1Ap+(x't) Y f (_,T) + q(_'_ + f( _)

p = 2(1 + M)pa J_ CpT "" x-_
d_ (lle)

_ _=t-

Ap-(x_t) T _x _I [_ _2 _I I
p = 2(l - M)pa (_'_) + q(_'_) _(cp_ d_ (llf)

•=t- x-_

u-a I

As(x,t)cvCv0U_ZL (zig)
- (_, _) _

T=t-

The integrations in equations (lle) to (llg) add the contributions of

all the sources which contribute to Ap +, _)-, and As at (x,t). These

sources lie along the characteristic lines T = t x - _ and

x - _ u ± a
= t - as indicated in sketches (e) and (f):

U

M<I

t,T

x-¢
1-=/- --

U +0 \\

/
/

(x, t)

.x,
/

(e)

_--hl I -- --_

M>I

1, r

(x, t) x-_

-_-: t- _--_
u J-

\,,
_- t X-_

U

" / I _x,_

(f)

The upper limit in equ_ktion (llf) is (+_) o:' (-_) depending on whether

M < i or M > i. (By using _ "_ulll_,conven-tio]l_ d{/(1 - M) is _Aw_ys posi-

tive_ _uld the absolute v'alue si(_ is not me,_'ded for 1 - M. )
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Substitution of equations (Ii) into equations (I) verifies that they
are indeed the general solution of equations (i). Equations (ii) could
have been deduced, formally, from equations (i). (This is, in fact, done
in the next section.) The present development was undertaken so as to
bring out more clearly the physical nature of the solution. Equations
(lie) to (llg) assumethat all perturbations are due only to the speci-
fied _, q_ and f distribution, so that there are no extraneous waves
propagating in the tube. Otherwise, arbitrary functions of x - (u + a)t,
x - (u - a)t, and x - ut (i.e., homogeneoussolutions of eqs. (i)) would
have to be added to the right sides of equations (lle) to (llg), respec-
tively. The quantities _, q, and f must approach zero sufficiently
fast, as _ approaches_, to make the integrals converge. As a result,
the perturbations at x =_+_ must be zero for all problems where equa-
tions (Ii) apply.

If the integrations in equations (lie) to (llg) are madewith respect
to • instead of _, the integrals take on the form (since
dT/d_ = i/(u± a) for T = t- (x- _)/(ul a) and dT/d_ = i/u for

=t- (x-

Ap-(x,t) _
p 2p

As

C v

' CpT a _=x- (u+a) (t-=)

CpT a J _=x- (u-a) (t-T)

tl }-CvlPT f [q(_,q:)]_=X_U(t__) d_ (12c)
-oo

Equations (12) are somewhat simpler than equations (llc) to (llg). The

integrations always proceed in the +_ direction. Note that the coef-

ficient i - M does not appear in equation (12b). Thus, Ap- does not

become infinite as M _ i (provided _, q, and f approach zero suffi-

ciently fast, as T _ -_), and equations (12) are generally applicable

at M = i as well as M _ i. E (Eqs. (ii) are also applicable at M = i

provided d_/(l - M) is treated as an indeterminate form.)

EThis contrasts with the earlier result that Ap- _ _ as M _ i

for a planar source (eq. (lOb)). This difference between the perturba-

tions due to a planar source and a volumetric source is typical of source

distributions in fluid flow problems. The intensity of the singularity

induced by a source in a fluid flow field decreases when a point source

is replaced by a surface distribution of sources and when a surface dis-

tribution is replaced by a volume distribution.
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Alternate Derivation of General Solution

The general solution obtained in the previous section is rederived
herein by a formal manipulation of the equations of motion as they appear
in the method of characteristics (ref. i). The latter employs the
Riemann variables P and Q as dependent variables. TheRiemann vari-
ables are then related to the dependent variables Zip+ and Zip-.

To solve one-dimensional flows of a perfect gas (with area change,
body forces_ mass_and heat addition) by the method of characteristics_
the equations of motion can be written in the form (from eq. (lll.d.9)
of ref. i)

5+P a [, f p 5+s]

5t - 2p L_ +---q-- + + (15a)OpT

5_Q a [. q f p B- 7

_t - 2p [_+ CpT a + Cp(r- I) Z_-J (13b)

D___s=___ (13c)
Dt pT

where

a u (15d)
P = r---__1 +_

Q=r-i 2

5±( ) _( ) (u_ a5t - _ + ' _( ) (15f)

D(Dt)= _( + u -_._-£-- (13g)

The quantities P and Q are the Riemann '_ariables. (These equal one-

half the values as defined in ref. i.) Equations (15) define the varia-

tion of P, Q_ and s in the characteristi( directions dx/dt = u + aj

u - a_ and u_ respectively. A numerical i1_tegration of these equations

(together with the equations of state) can _hen be obtained by proceed-

ing along the characteristic directions_ in small increments_ as dis-
cussed in reference i.

If _ f_ and q are small_ the equations can be linearized. Again,

by letting the prefix Zi represent the departure of a flow variable from

the basic uniform flow_ equations (15) becone
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5

a 2cp(r - i) = + _ +

_a As q (14b)
a 2Cp(_ i) = + CpT

has q- (14c)
Dt pT

Integrating equations (14a) and (141)) along the characteristic directions

gives (for AQ = AP = As = 0 at t = -_)

moo _):_ (_,
q(_,T)

+--

CpT a _:x- (u+a) (t-T)

(15a)

f(_,T)] Id ma _=x-(u-a)(t-_)

(l_b)

- CpT

The integral of equation (14c) is the same as equations (llg) or (12c).

Comparison of equations (15) with equations (12a) and (12b) shows

I-g As ] _P+ (16_)- 2cp(T i) =-_-

[a___ As ]_Ap- (16b)r 2o (_- i) --7
p

Thus, equations (12) (and eqs. (lie) to (llg)) could have been obtained

by a formal integration of equations (iSa) to (13c). Also, the elemental

source solutions can be deduced from equations (15). However; it is felt

that the previous derivation of these equations brings out the physical

nature of the flow.

Equations (16) relate the perturbation of the Riemann variables

/iP and AQ to the variables of the previous section (namely Ap +, Ap-,

and As). This relation can be deduced directly by a perturbation of

the Riemann variables. Thus, perturbing equations (15d) and (13e) gives
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a AQ = r ----y-g_-_ = _ p

+ acp(r 1)

+ 2Cp(r - 1)

&u+ +

a 2Op(r _)

Au- + _'As

- -7- ZCp(r- l)

Cp(r 1) _ -g

+ Cp(r - -+_ -

(17)

(18)

Equations (17) agree with equations (16), as expected. Equations (17)

and (18) provide a physical interpretation for fXP and 2_Q within the

limitation of linearized theory. These eqlations show that for isen-

tropic flow (i.e., _s = O) the local value_ of TfXP/a and ]rAQ/a ex-

actly equal Ap+/p and /kp-/p, respectively. Or, alternately, the local

values of AP and /kQ equal Au + and -._u-, respectively. For As _ O,
the relation between AP, AQ and Ap +, Ap- (or Au +, Au-) also depends

on the local value of As and, therefore, depends on the thermal history
of the fluid element at the section under _onsideration.

A linearized method of characteristic{, employing gkP, AQ, and As

as the dependent variables, was developed in reference 4 for finding non-

uniformities in a shock tube (due to the w_ll boundary layer). The method

of reference 4 can be compared with the pr__sent method as follows. Ref-

erence 4, in effect, integrates equations lisa) to (13c) in the appro-

priate characteristic directions. Since _ appears on the right side of

equations (15a) and (15b), the solution fol_ fXP and /kQ is coupled with

the energy equation (eq. (15c)) for noniseiltropic flows, and all three

equations must be solved simultaneously, i:n the present method, Ap +,

Ap-, and /ks are the dependent variables. However, the solution for

Ap + and /kp- is not coupled with the enelrgy equation and can be found

without a knowledge of As. Thus; the sol'ition for Ap + and /kp- is

somewhat simpler than the corresponding sol.ution for ZXP and /kQ. In

addition, /kp+ and /kp- have a simple phy:;ical interpretation, which is

not the case for AP and /kQ. For isentr,)pic flow, the two methods be-

come identical (except for notation).
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APPLICATIONS

The applications of equations (ii} and (12) are illustrated by con-
sidering several one-dimensional unsteady flow problems. In particular,
three classes of problems are considered. The first class pertains to
flows wherein the basic (unperturbed) flow extends from x = -_ to
x = +_. The second class pertains to flows wherein there are two basic
uniform flows separated by a discontinuity (such as a shock wave_ contact
surface_ flame front_ etc.) that moveswith constant speed. The third
class consists of several piecewise uniform basic flows_ each separated
by discontinuities moving with constant speed. For the latter class_
attention is focused on cases wherein the discontinuities are centered.
That is_ they all originate at somefixed point_ say x = 0_ t = O. Flow
in an ideal shock tube (assuming the expansion wave has negligible thick-
ness) is an example of a piecewise uniform flow with centered
discontinuities.

Basic Flow Infinite in Extent

The solution of problems wherein the basic flow is infinite in ex-
tent is given directly by equations (ii) and (12). Since the physical
nature of this solution has already been discussed in detail_ only two
simple examples are treated herein.

Firstj consider a flow for which AA = AA(_), m = q = f = O. That
is_ the perturbations are due to a steady-state area variation in the
tube. Integration of equations (lle) and (llf) gives (with

-pu _m_(_)
=_ d_ , aA(-..) =aA(+_) = 0)

Ap÷(x)_ _ M aA(x)
p 21+M A

Ap_IgA_+r M
p 21 -M A

(19)

which define the acoustic waves at station x.

locity perturbations at this section are then

ap(x) _ _2 _(x)

P i - M E A

Au(x) -rM m_(×)
a i - M 2 A

The net pressure and re-

(£o)
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These are the same results as obtained directly from steady-state isen-

tropic flow equations (e.g., ref. 5). Hence, steady flow through a

slightly nonuniform tube can be viewed as the standing wave resulting

from the superposition of unsteady acoustic waves generated by the source

-Ou d2_. Note that the perturbations at station x
distribution _ = A d_

depend only on the local area perturbation 2_A(x) (eqs. (20)). The ori-

gin of these perturbations may be seen more clearly by considering a tube

wherein the net area perturbation 2_(x) occurs at station _A and an

equal and opposite area perturbation occuls at _B' as indicated in fig-

ure 2(a). The equivalent planar source strength _ at _A and _B is

-pu_A(x)/A and 0t_A(x)/A, respectively. For a subsonic basic flow,

the pressure perturbations at (x,t) are due to the Z_p+ wave originating

from the source at (_A,_A) and the Z_p- wave from the source at (_B,TB)

(fig. 2(b)). For a supersonic basic flow, the pressure perturbation at

(x,t) is due to the Zkp+ wave from the source at (_A,_) and the _p-

wave from the source at (_A,T_) (fig. 2(c)).

The second example is as follows: Co_sider a gas to be stationary

and uniform in a tube of constant area. At time • = O, volumetric body

forces of unit strength are distributed along the tube from _ = 0 to

= I, and they remain at constant strength1 thereafter. That is_

= 0 for and 0 (21a)

f(£,_) = 0 for _ < O, { > i

=i for O_ _< i

> o (21b)

The problem is to find the resulting pertu_%ations. These momentum

sources occupy the crosshatched region in figure 3(a). The perturba-

tions at a typical point (x,t) arise from -_hose portions of the two

characteristic lines through (x,t) which p_s through the crosshatched

region. (These portions are darkened in f_gure 3(a) for the two typical

points (x,t) indicated therein.) From equ_tions (ll) it is seen that

_p+(x,t) is positive and is proportional tc the length of the downstream

propagating characteristic intersecting th_ crosshatched area. Also,

Ap-(x,t) is negative and is proportional tc the length of the upstream

propagating characteristic intersecting th_ crosshatched area. As a re-

sult, each of the numbered regions in figure 3(b) has a different ex-

pression for the local net pressure perturbation. The pressure distri-

bution in the tube at times t = t' and i = t" is indicated in fig-

ures 3(c) and (d). The solution is antisy_metric about x = i/_. This

type of approach is applicable for finding perturbations induced by im-

pulsive application of a magnetic field to a conducting field flowing

through a uniform tube.
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Basic Flow Containing a Single Discontinuity

Consider a basic flow consisting of two regions_ I and 2_ separated
by a discontinuity moving with velocity w (fig. 4(a)). The discontinu-
ity maybe a shock wave_ contact surface_ flame front_ and so forth. The
flow in regions i and 2 is assumedto be perturbed by mass_momentum_and
heat sources. The problem is to find the perturbation at a typical point
(x,t).

The net perturbation at any point is found by summingthe contribu-
tion of all the elemental sources influencing the point. The sources
contributing to a typical point in region 2 lie along the characteristics
noted in figures 4(b) and (c) for the basic flows indicated therein.
These characteristics are found in the following way. First_ the down-
stream and upstream propagating acoustic characteristics and the particle
path characteristic are drawn through (x,t). These are lines a, b_ and
c_ respectively. These characteristics intersect the discontinuity at
points B and C. All the possible characteristic lines in regions i and
Z which terminate at points B and C are then drawn.3 This gives the ad-
ditional characteristic lines used in figures _(b) and (c). The physical
significance of these lines is as follows. The sources along lines a, b_
and c contribute directly to the perturbation at (x,t) in the manner dis-
cussed in the previous sections. The sources along lines d generate a
downstreampropagating acoustic wave which arrives at (_B,_B). The lat-
ter is designated _P$_B" This interacts with the discontinuity and
generates a reflected wave (designated Ap_,B) which propagates along
line b so as to arrive at (x,t). Similarly, the sources along lines e,
f, and j each generate a disturbance at point B which interacts with the
discontinuity to contribute to the upstream propagating acoustic wave
Ap_B. The sources along g3 h_ i, and k generate a disturbance at point
C which interacts with the discontinuity so as to contribute to the en-
tropy perturbation at point C in region 2 (_S2,c) , which then propagates
along line C so as to arrive at (x,t).

The ratio of the generated wave (at a discontinuity) to the incident
wave is termed a "transfer function" herein. Acoustic reflection and
transmission coefficients are special cases. The numerical value of the
transfer function dependson the nature of the incident wave, the gener-
ated wave, and the discontinuity. Transfer functions for various situa-
tions are given in appendix C. For example_the following transfer func-
tions must be known at point B in figure A(b) in order to compute the
perturbation at (x,t): (Ap_,Jp2)/(Ap_,B/P2) , (Ap_,B/p2)/(_p_,B/pl) ,

and (Ap_ B/p2)/(ZkSl,B/Cv,l)._ - - - The net perturbation _p_ B/p2_ - is the sum

3p. 220 of ref. 12 gives all the possibilities.
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of the contributions from the three incide:it waves noted in the denom-
inators of the latter three transfer functions.

Formulas for the characteristic lines and intersection points in
figures 4(b) and (c) are given as follows. The coordinate system is
chosen so that the discontinuity goes through the origin.

Line a: _ = x- (u2 + as)(t- T) T = t - [(x- _)/(u2 + as)]

Line b:

Line c :

Line d:

Line e :

Line f:

Line j :

Point B:

_a(_)

= x - (uS - az)(t - T)

= x- _(t- _)

_c(=)

_j(_)

(u2 - a2)t l

= (US as ) jw

(22a)

=-_a(_)

• =t-[(x-_)/(u 2- as)] (S2b)

---_b(_)

_=t-[(_-_)/u_.] (2_c)

= Tc(_ )

_= _- [(_B-_)l(_2÷aJ](_d)

- _d(_)

_= _- [(_-_)/(u_-_l)](SSe)

=-_e(_)

• = _- [(_-_)/Ul] (_sf)

_f(_)

-= _0(_)

x- (u 2 - a2)t

"[B = w - (u S - a2) ' (2Sh)

w(x - u_t) x - u_t
= _c - (_i)

Point C: _C w - u S w - u 2

The equations for lines g; h_ i_ and k are ?ound from the equations for

lines d, e, f_ and j by replacing the subsc:'ipt B with the subscript C.

The perturbations at (x_t), in figure .=(b), can now be expressed

formally. Use the following notation for t}e integrals appearing_ in

e_:_t_o_s(l:_) _d (_):



19

I2,{a-_- 202 2({,_) + (CpT)2, + dT (2Za)a2 J _={a(,r)

and so forth. The pressure perturbations at (x,t) can then be written

(fromeqs.(lZ)an_flg._(b))

Ap_(x, t)

P2 -(12' _a) t (24a)
--00

P2 = 2, _b TB + Ap'_,{p?

-rB_p;_,g{j_ T'_e __ + _,J°,-,1 (cw_)l ...= _=_f
d"t"

(Z4b)

The entropy perturbation at (x,t) is

2_s2(x't) _ i --I t

Cv, 2 Cv_ 2
_C

where

I ) Lc.,,z=-_+z,c/pz Z,_g-=+ &';,C/pl '
+

"rC

__,c/°(.,__-(_l _=_i
aT

The net pressure, velocity, density, and temperature perturbations at

(x,t) can then be found from equations (lla) to (lid).
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The expressions for the perturbations at (x_t) in figure A(c) re-
quire two additional terms because of charecteristic lines j and k. The
perturbations at a point in region i are found in a similar fashion.

As an example, consider the propagation of a shock wave in a duct
having small area variations.
This problem has been discussed,
from other viewpoints_ in ref-
erences 6 to 8. The wave dia-
gram for obtaining the pertur-
bations behind the shock (region
2) is indicated in sketch (g).
Th_ fluid in region i is assumed
to be uniform and at rest so
thmt no disturbances originate
in that region. Thus, with
,m. = ,m_(_), m = q = f = o, aria
Z_A(-=) = O, equations (2_a) and

(2,_) gi,_e
(g)

_p_(x,t) = (I_)t = -Y_M2 g_A(x) (25a)

Z_p2(x,t)

P2
t Ap .,B/p2

= z(J- - M2)If Ap_,Blp_[2(1__M2) - . (2_b)

where (Aps,B/P2)/(f_p_,£p2) is found from eqlation (ClOa). The entropy

pertu_baUon at (x,t) is found by evaluatinge_uation (_Sa) at ({C'%)'

which gives fXp_,C/p2_ and multiplying by th_ transfer function

(AS_,C/Cv,2)/(Ap_,c/p2) , as given by equatio_ (C10b). The present solu-
tion is in agreement with the previous treat_ents of this problem.

Basic Flow Containing Centered )iscontinuities

Basic flows which contain a number of discontinuities; but are uni-

form between these discontinuities; can be t_eated by further extending

the methods of the previous sections. In th_ present section_ examples

are considered wherein the discontinuities a:'e centered at x = O, t = O.
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The first example is that of a piston starting impulsively from
rest and moving with uniform velocity Up thereafter (fig. 5). The
fluid in the tube is initially at rest (region i). A shock is generated
such that the fluid between the piston and the shock moveswith a basic
velocity equal to that of the piston (i.e., u2 = Up). The fluid in
region 2 is assumedto be perturbed by massj momentum_and heat sources_
and the resulting perturbations are desired. No sources are assumedin
region i. The characteristics influencing a typical point in region 2
are indicated in figure S(b). There are an infinite numberof charac-
teristic line segmentsdue to successive wave reflections at the shock
and piston. The expressions for the pressure perturbation at (x,t) are
of the form:

P2 = 2'_a TA

Ap_(x,t) (i)t
P2 - _b TB

+

The entropy perturbation can be found by evaluating equation (26a) at

point C (so as to have Ap_,c) and then utilizing equation (Cl0b).

Since the piston moves with constant velocity_+ the reflection co-

efficient at the piston ((Ap_A/p2)/(Ap_,A/p2), (AP?,JP2)/(AP2,D/P2),

etc.) equals I (eq. (C5)). The reflection coefficient at the shock

((Ap_,B/p2)/(Ap_;gp2), (Ap_,E/p2)/(Ap_E/p2), etc.) is zero for

M s _ Us/a I = i (eq. (ClOa)). For y ne_r 1.4, it is small for all

values of M s • In the latter cases, only the first few terms are re-

quired in equations (26). Figure 5(c) indicates the characteristic

lines which are considered when the reflection coefficient at the shock

is essentially zero.

%If the piston velocity has small nonuniformities AUp, the problem

can be treated as the superposition of the constant up case plus the

case wherein pressure waves of magnitude Ap_,A/p 2 = _AUp,A/a 2,

Ap2,Jp_+ : _AUp,Ja3, etc. are generated at points A, D, F, .... _e

latter follow from the acoustic relations.
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The piston-driven shock problem was treated in reference 6, from

another viewpoint, to obtain the effect of small variations of piston

velocity and the effect of a small linear _rea variation. _The effect

of an arbitrary area variation (e.g., wall boundary-layer effect), as

well as arbitrary heat and momentum additic_n, can be treated by the

present method.

The, second example is the determination of nonuniformities in shock

tubes due to unsteady wall boundary-layer _,ction. This problem was

treated in references 2 and 3, and the solution is summarized herein.

Let regions i and 4 be the low- and high-pressure sections of a shock

tube (fig. 6(a)). W_nen the diaphra_m bresGs, a shock wave moves into

re6ion i with velocity us while an expansion wave (assumed to have

negligible thickness) propagates into region 4 with velocity -a 4. A

contact surface separates the shock compressed gas (region 2) from the

expanded gas (region 3). Because of the fluid motion relative to the

wall; a boundary layer develops _mlong the wall between the expansion

wave and the shock as indicated in figure 6(b). The problem is to find

the perturbations (due to the boundary layer) at a typical point in

re£ion 2. The characteristics considered in references 2. and S are in-

dicated in figure 6(c). The pressure perturbation at (x,t) is then found

from (in the present notation)

AQ(×,t)
- B + nP2,B/P2+ + AQ,F/P2 ]' +

(27b)

The bracketed term on the right side of equ:_tion (27b) equals Ap_,B/p 2

and may be found by evaluating equation (27;_) at point B. _ne entropy

perturbation at (x,t) is found by evaluatinl _,equation (27a) at point C

rand _pplyJng equation (Cl0b). The source d: stribution in the integrals

of equations (27) is given by

(B8)
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where v 2 and v 3 are the normal velocities (positive when directed
inward) at the outer edge of the boundary layer in regions 2 and S, re-

spectively (as discussed in connection with eq. (2)). These velocities

have the form

K2
v2(_,_ ) = (29a)

(Us _

KS
%(_,_) = (29b)

+ N3

where K 2 and K 3 are constants and N = i/2 or 1/5 for wholly laminar

or wholly turbulent boundary layers, respectively (refs. 2, 9, and i0). 5

By using these forms, the integrals in equations (27a) and (27b) are

readily evaluated. A discussion of the resulting shock-tube nonuniform-

ities is given in references 2 and 3.

The linearized characteristic method developed in reference 4 is an

alternate method for determining shock-tube nonuniformities (see discus-

sion following eqs. (18)). However, the source distribution in reference

4 was based, in effect, on f(_T) (obtained by averaging the boundary-

layer wall shear across the tube cross section) and q(_,T) (obtained by

averaging the heat transfer at the wall and the dissipation within the

boundary layer) as opposed to the use herein of _(_,_) (i.e., effective

area change due to boundary layer). Since f(_,_) introduces _t anti-

symmetric wave pattern (with respect to sign), the resuf.ts of reference

4 differ by more ths_ just a factor of' proportionality from the results
of references 2 and 3 (particularly with regard to the perturbations near

the contact surface). This point is discussed further in references 2

and 3. For the case of relatively thin wall boundary layers, it is clear

that the source distribution used in references 2 and 3 is the correct

one. The vie_cpoint of reference 4 ma N have some validity, however, when

the bou_dary layer spans the entire tube cross section (provided the

proper boundary-layer theory is used to obtain the w'sil shear, heat

transfer, _md dissipation and provided the ave.raged perturbations are

sufficiently sm_i to justify '_ff-]nearized approach). The authors of

reference 4 h_;.re extended their work, and. the resud_ts are given in r_f-

erence ].I..

'l'lJefi.ow resu3 tin_ when a weak deflagration is _initiated at the

closed, end o17 _'_i.fl._eis ,u,r__qff_er_x,'_p].e of a basic flow cont'_ining

Tiu _x_'_ _',;] }_ f:n." v?i([,'<) iis somewhat in ,,trot b<_caur,e_ of neslect

<},[_ #.}t:_ f/_;i13_; ',,,_i,-Jt,i] ,:q_ l}h_} (_xpal';]i,_,_t w&£vo and becaRse of J;ik_.< presen%,a of

}_jSS, i>rj&<j[l:l, .].j J:'rorN r(Lrl]ion _I_ %[, t_l(-, W;_] i })O tW{_(]_] %h O d__;ip[Lr',ASm loc,n,%J._urL

.!.i._:],:,_i _ '.'.!' rt;<.i ;_i ",_:'.'. (o._:_,'pl:, pos'._lbl_>., Z_r _;t:r.wS _;h.:_cb_).
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centered discontinuities (see p. 225 of re._. 12). The basic flow con-

sists of a shoch wave, followed by a plana;: flame front; both propagat-

ing with constant speed (fig. 7). The sho,;k induces a .....elocity uS

in region 2,. The closed-end boundary cond_tion requires uS = O. (For

a given flame, the shock strength is detemlined by the boundary condi-

tion uS = O.) _e effect of the wall botuldary layer on the flame and

shock propagation can be treated in a manm,_r similar to the shock-tube

problem. Thus_ the source distribution is taken to be _ = 0_v/A, where

v is found from boundary-layer theory. N()te that the boundary layer in

region 2 is the same as that in region 2 of the shock tube. However_

since uS = 0 in the present example, the boundary layer in re{_ion 5 is

essenti_lly a thermal boundary layer only. The solution of this thermal

boundar2_ _ layer can be found using the meth(,ds of reference S provided

the flow across the flame front is assumed uniform (i.e., the boundary

laz;er from region 2 is neglected). The characteristics contributing to

the. perturbations at (x,t) in region 2 are indicated in figure 7(c). It

is assumed therein that the reflection coefficient at the shock is zero

(appropriate for weaY_ shocks). Transfer ftmctions_ for use at a planar

fl_me front, are derived in appendix C. Tle effect of flame front dis-

tortion and the corresponding changes in t_e mean flame speed are not

considered in the present formulation. Th( effect of temperature and

turbulence level on flame speed is also neglected.

CONCLUDING REMAF KS

A source distribution method has been presented for determining

perturbations due to small unsteady area vsriations, mass_ momentum, and
heat additions in a uniform (or piecewise _niform) basic one-dimensional
flow.

In the present method_ the perturbed flow field is decomposed into

three mutually independent wave systems, nsme!y (i) upstream propagating

:_coustic waves Ap-, (2) downstream propagsting acoustic waves Ap +, _mnd

(S) entropy waves Zks. The pressure and velocity perturbations at a

_i_en section depend only on the local values of _p- and _p+ and are

5nd_pendent of the local value of Zks. However, a knowledge of As is

r_)q_ired if the local density and temperature perturbations are to be

t'_md. The present method is compared with the linearized method of

'!_arac_eristics (e.g., ref. 4) in the paragraph following equations (18).

Tl_e linearized method of characteristics e_ploys LkP, AQ, and _s as

t,h¢ dependent variables. But Z_P and _Q are not independent of As

!'oz'nonisentropic flows. Hence, _P, AQ_ anff _s do not form a system

o_i'ti_r_e mutually independent waves as do _p+, _p-_ and As.
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Several alternate viewpoints can be used to solve the problems con-
sidered in the body of the report (e.g._ refs. _ 6_ 7, and S). It is
hoped that the present elementary discussion adds additional physical
insight for these flows.

Lewis Research Center
National Aeronautics _ud SpaceAdministration

Cleveland_ 0hio_ Februar7 6_ 1959
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APPENDIX A

SYMBOLS

cross-section_ml area of tub_'_

points on characteristic li_Les

speed of sound

characteristic line_

specific heat at constant pressure

specific heat at constant volume

body force, per unit volumej acting in +x direction

see eqs. (2_a) and (_3b)

perimeter of tube cross section

Mach number, u/a

mass addition, per unit voluae_ per unit time

Riemann variables (eqs. (iSd) and (13e))

pressure

heat addition, per unit volm_e_ per unit time

gas constant

entropy

temperature

time

velocity in +x direction

velocity (norm_zl to wall) of fluid particle at wall, or

st outer edge of thin boundary layer (positive inward)

velocity of discomti_uity
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x

0

T

Subs cripts :

1,2,5, ...

A,B_C, ...

f

s

Superscripts :

( )+

()-

(-)

distance along_ tube_ taken in stream direction

ratio of specific heats

prefix denoting perturbation

(cpT)_/(OPT) 1

equivalent mass addition_ per unit volume_ per unit time

distance along tube; defining source point

density

time, defining source point

regions

points on characteristic lines

flame front

shock w_ve

perturbation associated with acoustic wave propagating in

+x direction

perturbation associated with acoustic wave propagating in
-x direction

used with _ q_ and f to indicate source strength defined

on a per unit cross-sectional area basis

Special Notation:

_+()
%t

eq. (13f)

eq. (15g)
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I.%_-} _. , . ° .

Example :

S +
P2_A pressure perturbation at pofnt A, region 2, associated

with acoustic wave propagating in +x direction
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APPENDIXB

ELEMENTALSOURCESOLUTIONFOR M > i

The wave due to an elemental source in a subsonic stream was derived
in the body of the report. The case of an elemental source in a super-
sonic stream is treated herein.

Planar mass_momentum_and heat sources are placed at x = 0 at
t = 0 and remain at constant strength thereafter. The resulting t-x

C

///2 a

_X

(h)

diagram, for M > i; is shown in sketch

(h). Line a is a downstream propagat-

ing acoustic wave_ line b is a contact

surface_ line c is an upstream propagat-

ing acoustic wave (which is swept down-

stream_ since M > I)_ and line x = 0

is a line across which discontinuities

also originate. The perturbations are

constant in each of regions 2 to 4.

These are found by considering the per-

turbations arising from each of the

above-mentioned lines.

Line a:

Line b :

Line c :

The acoustic relations give

Ap 2 = paAu 2

AP2 = _P Au 2
a

Since this line is a contact surface_

±Ps = aP2

Au 5 = Au 2

From aaoustic relations

Ap 3 - Ap4 = -pa(Au s - Au4)

o (mus _ mu,,,.)Z4o5 - Ap 4 = -

(BI)

(B2)

(B3)
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Line x = O: Integration of equation;_ (i) across x = 0 gives

uAP4 + pAu4 = -_ /

/

_u 4 + (i/p)Ap 4 = T/P I

I

Equations (BI) to (B,i) are. nine equations :n nine unknowns.

tions can be written

_P2 Z_P3 r

p p 2pa(l + M)

____4 {_yM= ,_+

As 3 As 4 "_

cv cv CvPUT

CpT

(B4)

The solu-

The other perturbations can then be found ]'rom equations (B1) to (B4).

I / /b

/2' a'

Now assume that equal and oppo-

site (vith respect to the previous

exampl_ ) planar mass momentum and

heat sources are placed at x = 0

at t : At and remain at constant

strenglh thereafter. The t-x dia-

gram i_ given in sketch (i). The

lines _re displaced upward by an

amount At from those in sketch (h).

The pe_ turbations in regions 2' , 3'

and 4' are equal and opposite to

X those Jn regions 2_ 3, and 4.

(i)
The flow field associated with an elenental mass, momentum, and

heat source at x = O, t = 0 is found by ]inearly superposing the flows

in sketches (h) and (i). The superpositiol is indicated in sketch (j).
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-4+4'

! , F4+3'
CC /

/

//;3+3, .-b. 3+2'
J lf/'- / "- b ,

I f/../ / / " _L..O

_X

(j)

The perturbations are zero everywhere except between lines a-a'_ b-b'_

and c-c' (since the perturbatioms in regions 2, 5_ and 4 are equal _ud

opposite to those in regions 2' _ 5' _ and 4' , respectively) • The pertur-
bations between lines a-a' can be written

p - 2p.(l + M) + + + (B6_)

Au + Ap + i Ap +

a P ]r p

Between lines c-c'_ the net perturbations are

±p- r __q

p - 2pa(M i) + CpT -
(B_b)

Au- Ap- i Ap-
a P T p

Between lin{_s b-b', the net perturba,tions are Ap = Au : 0 and

As q

Cv- CvPU T
(B6c)

A_2_ _ m_.2
p c

P
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By considering the limit as At _ O, equat:.ons (B6) define the perturba-
tions due to an elemental planar source at x = O_ t -- 0 in a supersonic
stream. These equations differ from those for the M < i case (i.e.,
eqs. (9)) only in the terms (i - M), (M - i.) appearing in the expressions
for Ap-. Use of Ii - MI in equations (i01 makes the latter applicable
for both M < i and M > i.

It maybe of interest to interpret the flow in sketch (h) in terms
of the elemental source solutions. For example_the net pressure per-
turbation at an arbitrary point in region 4 (see sketch (k)) maybe in-

t T

(x,t)

r"ll i I I" i i

"C /i

I I

(k)

_,erpreted as consisting of

Ap = Ap + + Ap- where Ap + is

_he downstream acoustic wave

(riginating from the source at

= O, m"' = t -[U(u + a)]
_hile Ap- is the upstream

Iropagating acoustic wave orig-

inating from the source at

= o, = t -[U(u - a)].
The entropy perturbation at

(x,t) is equs_l to the entropy

erturbation which originated

_rom the source at _ = O_

I" = t - (x/u). The greater

_enerality of the elemental

_ource viewpoint is illustrated

by considering the source strengLh at _ = 0 to vary with time. Then_

the perturbatioms at any point can be fo_C directly from equations (B6)

provided the right sides are evaluated at T'" ' and _"m _ _ respectively.
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APPENDIXC

TRANSFERFUNCTIONS

In the body of the report it was necessary to know the ratio of the
generated wave to the incident wave when an acoustic wave_ or entropy
wave_ impinged on a discontinuity. Such ratios were termed "transfer
functions." The transfer functions for various discontinuities and in-
cident waves are found herein.

Contact Surface

The requirement that pressure and velocity be continuous across a
contact surface leads to (e.g., ref. 2):

Incident wave _p_:

Y2al

t ap_ ApU_I ha2 1

I Yla2

2

i"IAp__l AP_/P2
/ 2 (c_)

/ AP_-_I = Yla2

X Y2al

(C1)

Incident wave Ap_:

t

/
----x

(m)

+
APl/Pi 2

Yla2

ap_/p_ r_al - i

Ap_/p_ rla____2
Y2al

+I

(c3)

(c¢)
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Cons tant-Veloc ity Dis c__ntinuity

In this case the velocitj of _he disc_,ntinuity is assumed to be

unperturbed. A piston moving at constant _'elocity is an example.

(

/

(n)

_ff/plAQ/h
nPi/Pl- AP_I_2- (c_)

Constant-Pressure Discontinuity

In this case_ the pressure at the discontinuity is assumed to be

unperturbed. The open end of a tube is an example.

2 API+

I

_X

( 0 ) Shock-Wave Discontinuity

_I/_1 _Q/p2
ap2/p2

(c6)

The derivation of the transfer functicms for this case will be out-

lined. Let M s _= (us - Ul)/a I designate the shock Mach number reiat:[ve

to the fluid in region i.

I l

(p)
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Normal shock relations give

P2

Pl r+l

2
u2 - Ul 2 M s - i

al = _ +-----_Ms

I I/II"- in - -

cv L _+_ _ - l)Ms_+

Taking the differential of equations (CTa) and (C7b), eliminating

Aal i - i APl + i yield
and noting al - 2 Y Pl Y

- - _ - _ _ - M_ \pl r i rP2 Pl a2 ] aI T + i +" -

where

Z

2(r + z)_]

[_s__(,__)](_s_+_)
The differential of equation (C7c)_ upon elimination of SHs_ yields

/kS

(C7a)

(C7b)

(C7c)

(c8)

-As i (aP 2 aPl'_
o_ ',p_ _.) y (c9)

where

y _---

Use of the acoustic relations yAu+/a = @÷/p and ]_Au-/a = -Zhp-/p in

equations (C8) and (C9) then _rields the following transfer functions:
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Incident wave Ap_:

(q)

Incident wave APl :

-._-X

(r)

_X

a 2

g_P2/p2 z al - i

Ap_,/p2 - a2
z--+l

aI

_,'°v (_/_ __)__--l-g__--"- _ + Y
AP2_P2 \_xP2/p2

i + z(l T _ i Ms - i• r_i _

a2
i + z--

aI

(Cl0a)

(Cl0b)

(Clla)

(Cllb)

Incident wave f_p_:

i _ A52/

(s)

)+Y - i ,_ t:
TJz M7

a2
i+ z--

aI

(CI 2a)

(c...._,)
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Incident wave _Sl/C :

I Ap_ As%/

.............
(t)

_%7,. = (y + __)M a2
1 + z_

al

_7-£v=_+k_--gC)_

Planar-Flame-Front Discontinuity

(Cl3a)

(CiSb)

Transfer functions for a planar flame front are derived herein by

as sinai_rig:

2 ---_'U2 U Uf ----_Ul

(u)

<< 1;

(2) The flame speed relati _e to the gas in re6ion i_ uf - Ul_ is

(S) Tk'c lk,at release at the flame per unit mass_ per _&nit cross-

seci<b)nn£ [:tres_(denoted Q)_ is conr, tant.

The <LL_k_tions oJ' mot!<_n_ relative to the fl<_ne_ are,

Continui b" :

_,_r,)T;lptl t%_Y:l:

]_]{i<:_'{</ :

S( <s%<::

P! : PL

]o

Pl PIR1T-I _ :, , ,: ,,

(C_i_<:_)

(c:K_;)

(cz,'1_,)

(c____)
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Assumption (i) is incorporated in equation_ (Cl4b) and (C14c). The dif-

ferential of these equations yields_ respectively (noting assumptions

(2), i.e., a(uf - Ul) = 0 or Auf = aUl, _nd (3), i.e., aQ : 0),

_i L_°2 al i

OI 02 uf - u 2 _i T Aul- a2].l Au2_i _ ___2]._aT] (Cl_a)

AP l AP 2

- (clso)
Pl P2

AT I /iT2

where _ = (c T) /(c T) Eliminating the density terms between equa-p 2 p i"

tions (CiSa) and (CISd) yields

].iZ ZkTI a2 YI Au2 AUl

].! - 1 T1 - _l _2 ].2 a:, - ].1 T (C16)

where

z :--].2(].2- i)(x- i) _f_l-_i

But ATI/TI : [(].i- i)/].i] (APl/Pl) + (i/r])(ZXSl/Cv,1) , so that equation

(C16) can be written

fXs._v_f] Au2 Au I
Z (_Pl + i = a2].l ].2 ].i
kPl rl i ! aj---_ a2 ai

(C17)

Also_ from the definition of entropy_

As2 AP2 A02

Cv_2 - P2 ]."2 P2

, _2 AT2

- (i- ]'2' PT + ]F2 _--2

AP 1

--(i - _2)E-I+
].2 ZkTl

h TI

APl i r2 fiSl

= Y Pl + h ].l Cv_l
(C18)
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where _I

"Equations (CISb)_ (C17)_ and (018) together with the acoustic relations

then yield the following transfer functions :

Incident wave AD_:

_X

(v)

YI a2

= YI as
i + Z + y--_a-_

_pT_Ip_ Apllpl

_U°v, 2 : "s-_pT_lpJ_"pT_lpz

(Clga)

(clgb)

(C19c)

Incident wave /_P_:

'2 // Ap_

A_ i_____...,x

(w]

YI a2
I+Z-----

YI a2

I@Z+TZ aI

__------- = 1 @ _
+ Ap_IP_Ap2/p_

= y i

A_o-_l_2 _-_/_

(CZOb)

(c2oc)
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Incident wave As I:

_s 2

Ap- / ,..,+
2 / A,%

\,,/f'

(x)

SSl/Cv,L - ASl/Cv,l

-i Z

YI - i
I+Z+----

YI a2

T 2 aI

(C21a)

1r2
Asz/c_. 1 = Y "r_ ÷ Y A_'l/C,j,_ (c2zb)
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(a) Area variation.

(b) Sources affecting point (x,t) for subsonic flow.

(c) Sources affecting point (x,t) for supersonic flow.

Figure 2. - Source distribution method for finding steady
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0
(o)

w

IT

0
(b)

Ap

0 I
(c)

Ap

J
Y

(d)

(a) Volumetric body forces (0 S _ _ I, _ _ I_).

(b) Regions having different expressions for local pressure.

(cl Pressure distribution at time t -- t'.

(d) Pressure distribution at time t -- t".

Fi_ure 3. - Perturbations induced by volumelric body force

sources in uniform tube containing stationary gas. Sources

_Iniform and nonzero for 0 < _ < I_ _ > 0.
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_W

Ca)

2

Discontinuity

c/ _)

/

/
(b)

(a) Basic flow conta2ning discontinuity.
(b) Ch_mracteristics contributing to perturbations at (x,t) for

case 0 < M I < I_ 0 < M2 < I_ uI < w < uI + al_ u2 < w. Since

(w - Ul)/a I < I, discontinuity moves with subsonic velocity

relative to gas in region I.

Figure 4. - Characteristics for finding perturbations in flows

contain_.n_ a discontinuity.
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2

Discontinuity

o c/ _)
/

/

:

f/
x,_

(c)

(c) Characteristics contributing to pert_'bations at (x,t) for

case 0 < M I < i_ 0 < Mg < I, uI + aI < w_ u2 < w. Since

(w - Ul)/a I > 7, discontinuity moves wi_h supersonic velocity

relative to gas in region I.

Figure 4. - Concluded. Characteristics for finding perturbations

in flows containing a discontinuity.
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(o)

t_T

l

Piston/

/ Ix,,)_ _ _20_

0 (b)

f

1 ,I

E

Piston/ 2

A / o/_ t) /Shock

¢
0 (c)

(a) Basic flow at time t = t'.

(b) Chnracterist_e diat_ram.

(e) Chnracteristic dia6_ram when reflection coefficient at

shock is zero.

Fi_ S. - Piston-driven shock problem.
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,-Diaphragm
/

(a)

rWall boundary layer

(b)

Contact
f.r surface 2

Expansion 5 / (x,l)

wq_e _.b Shock

4 D_./_ / " I

Ng/ X,_

(c)

(a) Shock tube before diaphra_m rupture.

(b) Flow at time t = t'

(c) Characteristics makin_ major contribution to perturbations

at (x,t).

Figure g. - Calculation of nonuniformitie_ and attenuation

in _hock tubes. Expansion wave assumed to have negli_:ible
thickness.
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(a)

4:9

r Thermal r Velocity
', boundary layer / boundary

and thermal
layers

(b)

f,r Flame

l front 2

/ (x,t) __
f'

o (c)

;hock wove

(a) Basic flow (t = t').

(b) Wall boundary layers.

(c) Characteristics for determining perturbations at (x,t).

Reflection coefficient at shock assumed negligible.

Figure 7. Determination of perturbatlons due to wall boundary

layer when planar deflagration is initiated at closed end.

NASA - Lam_.,qey Field, Va _- ].. ).)




